\begin{tabbing} ((\% Establish inductive hypothesis \% \\[0ex]A\=ssert $\forall$${\it y'}$:$S$. $r$($f$(${\it y'}$),$f$($y$)) $\Rightarrow$ $P$(${\it y'}$)) \+ \\[0ex] \\[0ex]C\=ollapseTHEN (IfLabL \+ \\[0ex][`main`,OnHyps [12;10;9;8] Thin \% cleanup \% \\[0ex];`assertion`,(( \-\-\\[0ex]R\=epD) \+ \\[0ex]CollapseTHENA ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n),(first\_nat 3:n \-\\[0ex])) (first\_tok :t) inil\_term)))$\cdot$]))$\cdot$ \end{tabbing}